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COMBINATORIAL OPTIMIZATION:

WHAT IS THE STATE OF THE ART?

Victor Klee

Department of Mathematics
University of Washington

Seattle, Washington

This survey attempts, without including many details of
algorithms or of the underlying theory, to answer the follow-
ing questions: What is combinatorial optimization? What are
the landmarks of the theory? What are the most exciting re-
cent advances? What are the most promising directions for
research? What are the best sources of further information?

1. WHAT 1S COMBINATORIAIL OPTIMIZATION?

Many practical problems, especially those from operations
research and computer science, are concerned with optimizing
a real-valued function f over a finite set x of d-tuples
of integers., Often x is not presented explicitly but is

defined implicitly in some manner. When f  is linear and X




is defined by a finite number of linear inequality con-
straints with integer coefficients, the problem is one of
(linear) integer programming. Starting with the work of
Gomory (1958), finite algorithms and an extensive theory have
been developed for such problems. See Hu (1969), Garfinkel
and Nemhauser (1972), Geoffrion and Marsten (1972), Balinski
(1974) and Hammer et al. (1977) for details and further ref-
erences. Computational experience with these algorithms has
been mixed. Some fairly large problems have been solved, but
experience often shows, even with problems of modest size,
that an algorithm requiring a very large finite number of
steps may have no practical advantage over one requiring an
infinite number.

Most of combinatorial optimization deals with problems
that can be formulated as integer programs but have an under-
lying combinatorial structure that lends itself to the
development of special algorithms. One naturally hopes that
these algorithms, when applicable, will be more efficient than
general integer programming algorithms. Many of the prob-
lems are associated with a directed or undirected graph
G = (N,A) and a function o defined on the (finite) node-
set N or the arc-set A or on NuA and taking values in
J->,]. (G,0) 1is often called a network. It is assumed for
simplicity that G 1is loopless, so that A is a set of
ordered or unordered (according as G is directed or not)
pairs of distinct nodes. Arcs may be written as ordered pairs

(i,3) with the understanding that they will be interpreted

as unordered when G 1is undirected.




A path from node s to node t 1is a sequence of arcs of

the form

(%) (xgeXy) s (X)uX5) ey (X _q0%,)

with Xy = S and X, = t. When such a path exists, t |is
accessible from s. A path (*) 1is a simple path if there
is no repetition of nodes (other than that implied by the
notation). It is a circuit if X = Xgo and a simple cir-
cuit if there is otherwise no repetition. Note that simple
paths and simple circuits may conveniently be regarded

as sets (rather than sequences) of arcs.

A graph is connected if each node t is accessible from
from each node s # t. A tree is a connected graph that con-
tains no circuit. A spanning subgraph is one that uses all
nodes. A matching is a set of arcs no two of which have a
common node. A tour is a spanning simple circuit.

For purposes of illustration, we focus here on five
problems of network optimization, assuming for simplicity
that A 1is the domain of & and (except where the contrary
is stated) o > 0. The graph G should be undirected in (2)
and (4), but in the others it may be directed or undirected.
In all but (3), the desired solution may be regarded as a
subset of A, the length or weight of such a set being the
sum of the a-values of its members. (Thus the objective

function is a linear function of arc lengths.) In (3) the

values of « are regarded as flow capacities.




(1) (Minimum path) For two given nodes s and t of G,
find a shortest path from s to t or conclude that t |is
not accessible from s.

(2) (Minimum spanning tree) For a connected G, find a
connected spanning subgraph of minimum weight.

(3) (Maximum flow) For two given nodes s and t of G

such that t 1is accessible from s, find an a-feasible
flow of maximum value from s to t.

(4) (Maximum matching) Among all matchings in G, find one
of maximum weight.

(5) (Minimum tour) Given a tour in G, find a shortest
tour.

In addition to the many practical optimization problems

for which the immediate mathematical model is one of
(1) - (5), many other problems can be reduced to these or to
a combination of them. The reader is undoubtedly faced,
each day, with several instances of (1). Problem (2) arises
in the construction of communication networks. Problem (3)
stems from an attempt to evaluate the capacity of the East-
ern Buropean rail network to support a large-scale conven-
tional war (see Billera and Lucas, 1976); it and its relative,

the minimum-cost flow problem, are used to model a variety of

transportation problems. Though algorithms for (4) are per-
haps not as obviously useful as those for (1) - (3), matching
algorithms have in fact been applied to problems of personnel
assignment, pairing of machinced parts, scheduling of two-
processor systems, various routing problems (see Lawler (1976)
and his references for all of these), evaluation of biomedical

data (Tanimoto, 1976), and finding the rank of a matrix
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(Anderson, 1975; Klee and van den Driessche, 1977). Problem
(5) is a form of the famous traveling salesman problem, whose
applications include computer wiring, vehicle routing, and
job shop scheduling (Lenstra and Rinnooy Kan, 1975).

For the many direct applications of (1) - (4), and for
the reduction of other problems to these, the best single

source is the book of Lawler (1976), Combinatorial Optimiza-

tion: Networks and Matroids. It will be mentioned frequently
in the sequel. The books or survey articles of Berge and
Ghouila-Houri (1965), Bradley (1975), Busacker and Saaty
(1964), Dantzig (1963), Eiselt and von Frajer (1977),
Elmaghraby (1970), Ford and Fulkerson (1962), Frank and
Frisch (1972), Fulkerson (1966), Garfinkel and Nemhauser
(1972), Hu (1969), 1Iri (1969), Karp (1975b), and Whitehouse
(1973) also contain much useful information about combinator-
ial optimization. For problems reducible to (5) the basic
references are Cook (1970) and Karp (1972, 1975a). Aho

et al. (1974) contains a good introduction to this fascinéting
subject, and by far the most complete study is the book of
Garey and Johnson (1978?), Computers and Intractability: A

Guide to the Theory of NP-completeness.

Let n = |N|] and a = |A|, the numbers of nodes and arcs
respectively. When convenient, we assume N = {1,2,...,n}.
In each of (1) - (2) and (4) - (5), the desired solution may

be regarded as a subset of A or, relative to a given index-
ing of A, as an ordered a-tuple of 0's and 1's. There
are 2% such subsets, but many may be quickly excluded by
paying some attention to the combinatorics of the problem.

However, even after such exclusion and even for moderate




values of n, explicit investigation of all the remaining
subsets is impossible e¢ven on the fastest computer. To illus-
trate this, consider the case in which a > 0 and the graph
G = (N,A) 1is undirected and complete, so that A = n(n-1)/2.
(1) Shortest paths are simple. When G 1is complete the
number of simple paths from s to t is X;;é

(2) Each connected spanning subgraph of minimum weight is

g | 1

a tree. When G 1is complete the number of spanning trees is
n-2
n -
(4) when G 1is complete there are {n/ZJ arcs in each
maximum matching. The number of matchings consisting of Ln/2J

1,2k, k . I 2k+1 2k, k
5% k)k when n = 2k and f-—(k )k when

arcs is
n = 2k+l.

(5) When G 1is complete the number of tours (considered as
sets of edges) is (n-1)!/2.

1f a computer required only 10_10 seconds (one-tenth of

a nanosecond) to investigate a particular spanning tree, the
time required to investigate all nn—2 spanning trees would
be about .01 seconds for n = 10, 54 hours for n = 15,
8.3\‘105 years for n = 20, and 4.5\1014years for n = 25.
This explains why one speaks of the "combinatorial explosion"
in connection with such problems, and why an algorithm that is
merely "finite" may be useless except for very small problems.

The goal of combinatorial optimization is to find algorithms

that are useful even for very large problems.




2. WHAT 18 A COOD ALGORITHM?

How is the specd of an algorithm to be measured? One may
compare the performance of two algorithms for the same prob-
lem on a few instances of special interest, but how relevant
is that to their performance on other instances? One may base
the comparison on a large number of instances chosen in a reg-
ular or random fashion, but that may be very expensive and yet
not provide a reliable indication of performance on instances
much larger than those tested. Here we have used (and hence-
forth will use) the terms problem and instance in the sense of
Aho et al. (1974). Each instance is associated with particu-
lar numerical data and a problem is the class of all instances
of a specified form. For example, the maximum matching prob-
lem is the class of all instances of the form (4).

It is expected, of course, that large instances will usu-
ally be solved more slowly than small instances. For problems
concerning a graph G = (N,A), the parameters n = |N| and
a = [A] provide a natural measure of the size of an instance.
When 1 is a function of these parameters, an algorithm is
said to be of (time) complexity O(tv(n,a)) if there is a
constant ¢  such that for all G = (N,A) the algorithm re-
quires at most ci(n,a) computational steps. The notion of
"step" must be interpreted in terms of an appropriate model of
computation, and for relevance to practice the model should be
based on the random access operations of modern electronic
computers.  The discussion here is in terms of the RAM model

of random access computation described by Cook and Reckhow




(1973) and on pp. 5-14 of Aho et al. (1974), using the uni-
form cost criterion. Without too much distortion, the reader
may simply interpret "stu, " as a single arithmetic operation
(addition, multiplication, comparison, etc).

A good algorithm is one that is polynomially bounded--is
of complexity o(nfa%)  for some p and g. And of course
we'd like the exponents p and q to be as small as possi-
ble. This notion, popularized by Edmonds (1965a) and
Cobham (1965), is meaningful in theoretical studies and also
useful in practice. Since a s n2, an O(npaq) algorithm
is also O(np+2q). However, n and a are mentioned sep-
arately because a 1is much less than n2 for most graphs
arising in practice. Note that if an algorithm is to take
advantage of the sparseness of the input graph G = (N,A) in
order to achieve performance better than O(nz), then G
cannot be input as its full nxn adjacency matrix. Instead,
the input may consist of lists that tell, for each node
i € N, which other nodes j are adjacent to i, and that
also give the arc lengths af(i,]j).

The above notion of complexity involves the worst-case
bechavior of an algorithm, but average-case behavior is also
important in many applications. For this notion to be mean-
ingful, the sample space must be carefully defined, and for
it to be useful the sample space must be appropriately re-
lated to the instances in which the algorithm is to be
applied. Section 6 discusses the average-case behavior of

certain algorithms, but otherwise we are concerned only with

worst-case behavior.




In the interest of brevity, the preceding three para-

graphs have glossed over some important practical and
philosophical questions concerning the encoding of data, the
relationship between optimization problems and decision
problems, the choice of a model for computation, the reasons
for emphasizing polynomial boundedness, and the pitfalls
assocliated with average-case behavior. These matters are
treated by Cook and Reckhow (1973), Aho et al. (1974),

Lawler (1976), Weide (1977) and Garey and Johnson (1978?).

1t should also be stressed that if an algorithm works well in
practice, frequently handling large instances with amazing
ease, then it is of course a good and useful algorithm even
though it may not be "good" in the technical sense used here.
That is true, for example, of the simplex algorithm of linear
programming. Its worst-case behavior is not polynomially
bounded (Klee and Minty, 1972; Jeroslow, 1973; Avis and
Chvatal, 1976), even for minimum cost flow problems (Zadeh,
1973), and its average-case behavior has not been proved to
be polynomially bounded in any sense that is convincingly
related to computational practice. Nevertheless, there is
strong empirical evidence that the average-case behavior is
polynomially bounded (Dantzig, 1963, p. 160). On the other
hand, special network algorithms are apt to be faster than

the simplex algorithm for problems to which they too can be

applied (Bradley, 1975, p. 229).




3. WHAT IS THE STATE OF THE ART?

Problems (1) - (5) are admittedly special in nature, but 3
combinatorial optimization is concerned with special prob-

lems. Thus it may be reasonable to judge the state of the

art by what is known about (1) - (5). These problems appear
in various ways in the next four sections, in which the state
of the art is represented by three each of primary land-
marks, sccondary landmarks, exciting recent advances, and
directions for future research. 1f permitted to make a
summary judgment in architectural terms, we might say that

the subject of combinatorial optimization has gradually been

transformed from the rococo to the merely baroque (thus
reversing the evolution that occurred in architecture), but
is still far from the simple elegance of the classic orders
or the sleek functionalism of modern architecture. This
refers to a definition of rococo as "a meaningless asscmblage
of scrolls and crimped conventional shellwork, wrought into
all sorts of irregular and indescribable forms," and of
baroque as "odd, grotesque, bizarre, having unusual forma-
tion." The scrolls and crimped conventional shellwork are
the many papers in the subject which repeat, in only slightly
different form, algorithms that appear in earlier papers.

As the subject has developed, these "scrolls" have fallen
away (been forgotten) and interrelationships have been dis-
covered among much of what remains. The subject has even

achieved a considerable degree of architectural unity and may

now properly be regarded as a branch of mathematics, or of




e ——————

operations research, or of computer science. However, the
branch is certainly of "unusual formation," because in the
long search for "good" algorithms for (1) - (5), none has

been proved "best" relative to the RAM model of computation.

4. THREE PRIMARY LANDMARKS

Three lines of investigation stand out for their intrin-
sic depth and their influence on the rest of the field. They
are associated with problem (3), with problem (4), and less
directly with (5). We consider only the directed case of (3)

because its formulation is slightly simpler.
A. The Maximum Flow Problem
and Its Ramifications

For each real function ¢ on A and each node Kk ¢ N,

let

uk(w) = x(k,j)(A ¢(k,3) - x(i,k)eﬂ oL, k).

The function ¢ is an  (s,t)-flow if it satisfies the con-

servation conditions

(a) W (9) = 0 for all k € N ~ (s,t}

11




(at any intermediate node, the outflow equals the inflow),
from which it follows that us(w) B -ut(¢) (the net outflow
at the source s equals the net inflow at the sink t).

The number us(o) is called the s-value of ¢. The flow ¢

is a-feasible if it satisfies the capacity constraints

(b) 0 < ¢(i,j) s a(i,]) for all (i,j) € A.

Problem (3) asks for an a-feasible flow of maximum s-value.
This is a lincar programming problem in the variables ¢ (i,])
with objective function Mg« The feasible region is the con-
vex polytope Pa defined by the equalities (a) and the in-
equalities (b). Thus (3) can be solved by general linear
programming algorithms, but it is also amcnable to the
special methods of combinatorial optimization.

An (s,t)—gg& is a set of arcs whose removal from G
leaves no directed path from s to t. The initial question
about rail capacities led to the max-flow min-cut theorem of
Ford and Fulkerson (1956) (discovered also by Elias et al.,
1956) and to their book on Flows in Networks (Ford and
Fulkerson, 1962), which stimulated much rescarch on combina-
torial optimization. The theorem asserts that the maximum of
the s-values of the a-feasible (s,t)-flows is equal to the
minimum of the weights of the (s,t)-cuts. The flow-augment-
ing paths used to prove this theorem are used also in an
algorithm for finding a maximum flow: As described by Ford
and Fulkerson (1957, 1962), the algorithm is not polynomially
bounded but it has been applied successfully to a large num-

ber of practical problems. Edmonds and Karp (1972) use the
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method to produce an O(na?) algorithm (see pp. 116-120 of
Lawler (1976) for an exposition of their work), and
Kinariwala and Rao (1977) have a different O(ns) algorithm.
The O(nza) maximum flow algorithm of Dinic (1970) is im-
proved by Karzanov (1974) to 0(n3). Section 6 contains
additional comments on the Dinic-Karzanov algorithm.

Space permits us to mention only a few of the many con-
sequences and ramifications of network flow theory. An
early observation was that if the capacity function a 1is
integer-valued then all vertices of Pu have integer co-
ordinates and hence any linear integer program over POl can
be solved as an ordinary linear program, without worrying
about the integrality constraints. That led to the search
for other integer programs which could be solved as linear
programs and thus to the study of totally unimodular matrices.
See Garfinkel and Nemhauser (1972), Hu (1969), Lawler (1976)
and their references. 1In a different but related direction,
the theory of blocking and antiblocking polyhedra (Fulkerson,

1971; Chvatal, 1976, pp. 316-318) may be regarded as a far-
reaching generalization of the max-flow min-cut theorem.

Suppose, in (3), that each arc (i,)) € A has not only a
capacity a(i,j) but also a cost Yy(i,]j) of sending a unit
of flow along the arc, and suppose there exists an
a-feasible flow of given s-value v. The minimum-cost flow
problem asks for such a flow ¢ whose cost
z(i,j)ch Y(i,j)¢(i,3j) is minimum. The primal-dual approach

to finding minimum cost flows led to the general primal-dual

linear programming algorithm of Dantzig et al. (1956).

i e,




Many other problems of combinatorial optimization can be
reduced to the maximum flow problem or the minimum-cost flow
problem. See the next paragraph for one example and Lawler
(1976) for others. Plainly if a single publication is to be
named as the most important landmark of combinatorial optimi-
zation, it must be the book of Ford and Fulkerson (1962). It
is now outdated in many respects, but that merely indicates
its success in stimulating the development of a new branch

of mathematics.

B. Maximum Matching

Because of its close relationship to other combinatorial
topics, special attention has been paid to the case of the
maximum matching problem (4) in which each arc is of weight

1 (cardinality weighting) and G 1is bipartite. Let P and

Q denote the two parts of the node set, and form a directed
graph D by adding new nodes s and t, new arcs (s,p)
and (q,t) for all p e P and q € Q, and directing all
old arcs from P to Q. Let each arc have capacity 1. Then
the maximum matching problem for G 1is easily seen to be
equivalent to the maximum flow problem for D. Hence the
maximum cardinality matching problem for bipartite graphs can
be solved as a maximum flow problem, but it can be solved in
other ways as well.

A theorem of Berge (1957) asserts that for cardinality
weighting, a matching M is maximum if and only if it admits

no augmenting path. This is a simple path § whose end nodes
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are not covered by M and whose arcs belong alternately to
A~M and to M. If S ¢ A is such a path and M' is the
symmetric difference M®S = (M~S) u (S~M) then M' is a
matching with |M'| = |M| + 1. Suppose, conversely, that
there exists a matching M' with [M'| > |M|. Following
Norman and Rabin (1959), consider the graph G' = (N,A')

where A' = MOM'. Each node of G' 1is of valence < 2, so

G' 1is a node-disjoint union of i1solated nodes, circuits
whose arcs alternate between M and M', and alternating
paths. Since |M'| > M, at least one of the alternating
paths is an augmenting path for M.

For the cardinality weighted bipartite case, augmenting
paths are relatively easy to find; an O(na) maximum match-
ing algorithm that is unusually easy to understand, analyze,
and program can be obtained by specializing the method of
Desler and Hakimi (1969). By finding several augmenting
paths simultancously, Hopcroft and Karp (1973) produce an
elegant O(nvea) algorithm. When G 1is bipartite but the
arc-weighting o is unrestricted, (4) is called the assign-
ment problem. The best available algorithms are of
complexity O(pqz), where p and q are the cardinalities
of the two parts of the node-set (Kuhn, 1955; Tomizawa, 1972;

Lawler, 1976, pp. 201-207).

The work of KFdmonds and others on nonbipartite matching
constitutes a second primary landmark in the development of
combinatorial optimization. Augnmenting paths play a role
here too, but it is much more difficult to find them effi-

ciently than in the bipartite case. For several years there
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was doubt about the existence of a good nonbipartite maximum
matching algorithm, even for cardinality weighting. However,
Edmonds (1965a) found an 0(n4) algorithm and then (1965b)
showed how to extend it to arbitrary weightings. His imple-
mentation is improved in the 0(n3) algorithms of Gabow
(1973, 1976) and Lawler (1976, pp. 217-263). See also Feicht,
Heck and Pape (1977). For cardinality weighting only, a
fairly simple O(na) implementation is provided by Kameda
and Munro (1974), and the ideas of Hopcroft and Karp (1973)
are extended by Even and Kariv (1975) to yield an O(n§&)
maximum cardinality matching algorithm for general graphs.

It seems safe to say the latter has not been widely checked,
for the joint paper is quite condensed and the detailed expo-
sition, in the dissertation of Kariv (1976), requires more
than 200 pages!

The nonbipartite maximum matching problem is certainly
one of the deepest for which good algorithms are known, and
the rationale behind Edmonds's approach has been influential
in other ways that space does not permit us to describe
(Edmonds, 1970; Chvatal, 1973). A book on matching is being

written by Edmonds and Pulleyblank (1978?).

C. NP-Completeness

A third primary landmark of combinatorial optimization
was the discovery by Cook (1970) and Karp (1972, 1975a) of a

large class NPC of combinatorial decision problems such that

(i) NPC includes many important and difficult problems




of combinatorial optimization (for example, a close relative
of (5))--problems for which good algorithms have vainly been
sought for years by many researchers;

(ii) many problems in NPC are at least superficially sim-
ilar to problems for which good algorithms are known;

(iii) 1if even one member of NPC admits a good algorithm
then they all do.

The precise definition of NPC depends on the notions of a

deterministic Turing machine (DTM), a nondeterministic Turing
machine (NTM), the complexity of a TM, and other notions from
the theory of computation. The details are complicated, but
some may be omitted because it is known that a problem admits
a good algorithm for the RAM model of computation if and only
if it admits one for the DTM model. Thus for present pur-
poses a DTM may be regarded as an ordinary computer program,
and an NTM may be regarded as an animate DTM so fecund and
imaginative that it can, at the start of a computation, make
a finite number k of guesses and immediately split into Kk
replicas of itself (to be run simultaneously), one to inves-
tigate the consequences of each guess. The complexity of a
TM is a function that tells how long it takes to process sets
of input data of various sizes,

Let P {resp. NP denote the class of all decision problems
solvable by DTM's (resp. NTM's> of polynomially bounded com-
plexity. Then P consists of all decisicn problems that admit
good algorithms. And NP consists of all decision problems
for which an affirmative answer can be obtained (when correct)

by applying a polynomially bounded "checking algorithm" to the

appropriate guess output by a finite "guessing algorithm."




(For example, (xVyVz)AXAY is satisfiable but
XA(YV2Z)A (XVZ)A (xVyVz) is not.) It is unknown whether there
is a good algorithm for deciding the satisfiability of an
arbitrary expression of length n. Cook (1970) showed the
satisfiability problem to be NP-complete and then Karp (1972,
1975a) established the NP-completeness of many other problems
Y by showing that Y ¢ NP (usually easy) and that the satis-
fiability problem, or some other problem known to be NP-
complete, is reducible to Y. Garey and Johnson (1978?) have
not only the most extensive list of NP-complete problems, but
also an excellent discussion of various strategies for proving
NP-completeness.

In addition to the decision problem most closecly related
to (5), the following is also NP-complete.

(5') Determine whether G admits a tour.

It is easy to reduce (5') to the special case of (5) in
which all arc-lengths are 0 or 1. For let
A = {((1,2),(2,3),cs0p(n=1,n),(n,1)} and consider the aug-
mented graph G' = (N,AvA'). Let each arc in
A (resp. A'~A) be of length O (rosp. 1). Then G admits a
tour if and only if G' admits a tour of length O.

Note that if even one NP-hard problem admits a good algo-

rithm, then P = NP. 1In particular, P = NP if and only if
(5') admits a good algorithm. These facts, (i) above, and the
fact that NTM's secem intuitively to be much more powerful
than DTM's, are regarded by many researchers as almost conclu-

sive evidence that P = NP. However, it is also conceivable

that (5) or (5') admits a good algorithm but does not admit

one of complexity less than o(nP)  where p 1is very large




and the algorithm therefore so complicated that it is un-
likely ever to be found. Good algorithms have been useful in
practice because for problems of practical interest they have
seldom been worse than O(ns) and the multipliers c¢ ﬁave
not been excessively large. Does this say more about the
complexity of the interesting problems in P or about the
limitations of human ingenuity in devising algorithms?

We mention only a few more NP-complete combinatorial
problems, mainly to illustrate the aspect (ii) stated above
and to prepare for later comments. In precise treatments,
the term "NP-complete" 1is usually reserved for decision
problems such as (5') and not applied to optimization prob-
lems such as those stated below. That distinction is
ignored here, for our aim is only to provide a rough under-
standing of NP-completeness. The problems listed below all
appear (in slightly different forms) in the list of Garey and
Johnson (1978?), and all but (2') are given by Karp (1972,
1975a).

The following problem should be compared with (l1). It is
NP-complete even in the cardinality weighted version.

(1') For two given nodes s and t of G, find a long-
est simple path from s to t.

The following should be compared with (2). For each
fixed d 2 4, it is NP-complete even in the version in
which all arc weights are 0 or 1. The problem arose in
the design of telephone networks.

(2') Given that G admits a spanning tree in which no
simple path has more than d arcs, find such a spanning tree

of minimum weight.
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For the cardinality weighting, (4) is equivalent to
asking for a smallest set of arcs that covers all nonisolated
nodes of G. Though (4) belongs to P, the following prob-
lem is NP-complete.

(4') Find a smallest set of nodes that intersects all arcs
of G.
A set X ¢ N is independent if no two of its members are
adjacent (joined by an edge). Since X 1is independent if
and only if N~X intersects all arcs, the following problem
is equivalent to (4').

(4'') Find a largest independent set of nodes in G.

The assignment problem, mentioned earlier, can be stated
as follows in terms of a nonnegative nxn matrix (aij):

Among all sets S of n pairs (i,j) that include at most
one pair from each row and column, find an S for which

o is maximum. This problem admits an O(n3)

E(i,3)es
algorithm, but the 3-dimensional assignment problem is

ij

NP-complete. It asks, for a nonnegative nxnxn array

(o5 4
(4''') Among all sets S of n triples (i,j,k) such

that no two members of S agree in any coordinate, find one

for which o is maximum.

Li,,k) es
Suppose, in fact, that each «

ijk
ijk is 0 or 1 and the
problem is merely to determine whether the maximum in (4°°')

is equal to n. Even that restricted form of the problem

is NP-complete.




5. THREE SECONDARY LANDMARKS

Among the NP-hard problems, the traveling salesman prob-
lem (5) and its relatives stand out for the amount of atten-
tion they have received and the variety of practical
situations in which they have arisen. The same 1is true of
the shortest-path problem (1) among those for which good
algorithms are known. The collections of algorithms dealing
with these problems form two secondary landmarks of combina-
torial optimization. A third is the study of optimization in
independence systems, which originated from the minimum
spanning tree problem (2). A fourth, not discussed here, 1is
the part of polyhedral combinatorics that studies inter-
relationships among combinatorial optimization, linear
programming duality, and the facial structure of convex
polyhedra (Edmonds, 1965, 1970; Fulkerson, 1971, 1973;
Lovdsz, 1972, 1977; Chvdtal, 1973, 1975; Balinski and

Hof fman, 1978?).

A. The Traveling Salesman

Some important papers from the early history of the
traveling salesman problem are those of Eastman (1958),
Dantzig et al. (1959), Little et al. (1963), Lin (1965),
Gomory (1966) and Shapiro (1966). A comprehensive survey of

work up to 1968 is provided by Bellmore and Nemhauser (19e8).

The present situation is summarized below.




Though Gilmore and Gomory (1964), Systo (1973) and
Garfinkel (1977) have found good algorithms for some useful
special cases of (5), developments of this sort are limited
by the fact that (5) is NP-hard even for the special case in
which G 1is undirected and (a) each arc-length is 0 or 1,
or (b) G 1is complete and its node-set lies in the Euclidean
plane, the length of each arc being the distance between its
nodes. The second result is due to Garey, Graham and
Johnson (1976) and Papadimitriou (1977). The first follows
from NP-completeness of the undirected version of (5'),
which holds even for the special case in which G 1is a
3-valent 3-connected planar graph (Garey, Johnson and
Tarjan, 1976).

When a problem calls for minimization of a nonnegative
function f, an algorithm for the problem is e-approximate
if each "solution" output by the algorithm has f-value at
most l+¢ times the optimum value. Now suppose that P = NP
and As is (for some ¢£) an c-approximate algorithm for
the undirected case of (5). Then Sahni and Gonzalez (197¢)
show A{ is not polynomially bounded, while Papadimitriou
and Steiglitz (1977) show that if Ac is a local search
algorithm of the sort described below, even the search phase
is not polynomially bounded.

When G is undirected the traveling salesnan problem
may be approached by the local search methods of Lin (1965),
Reiter and Sherman (1965), Karg and Thompson (1964) as im-
proved by Raymond (1969), and many others. See Bellnmore and
Nemhauser (1968), Garfinkel and Nemhauser (1972), Savage et

al. (1976), and Papadimitriou and Steiglitz (1977) for a few




more references. In these algorithms, one starts with an
arbitrary tour and then, by searching a set of tours which
are considered its neighbors, either finds a shorter tour and
uses it as a new starting point or, if no shorter tour is
found in this way, terminates. (For example, the neighbors
of a tour T might be all tours T' obtainable from T by
replacing three successive arcs {w,x}, {x,y} and {(y.,z} of
T by the arcs {w,y}, {y,x} and {x,z}.) The resulting
tour is locally optimal relative to the neighborhood system
underlying the search procedure. Since the locally optimal
solutions often turn out to be globally optimal or close to
that, and since the computation time is often modest, these
methods are frequently used in attacking large instances of
(5). Intrinsic limitations are indicated by the theorem of
Papadimitriou and Steiglitz (1977) and by the fact that even
if P = NP no exact (O-approximate) local search method can
be polynomially bounded (Savage et al., 1976). See Golden
(1977) for statistical analysis of another heuristic ap-

proach to (5).

—

Christofides (1976) has an O(n3\ s—approximate algorithm
for the special case of (5) in which G 1is a complete un-
directed graph whose arc-lengths satisfy the triangle
Inequality (a(k,j) s a(i.k} + alk,j}). It first finds a
minimum spanning tree and then solves a matching problem.

His analysis is sharpened by Cornuejols and Nemhauser (1978).

When G is undirected and one seeks a tour that is
definitely optimal, the approach of Held and Karp (1970,
1971) is called for. It combines a branch-and-bound proce-

dure (for suiveys of such procedures, see Lawler and Wood,




1966; *gin, 1966; Mitten, 1970; Geoffrion and Marsten, 1972;
and Garfinkel, 1978) with an ascent method that involves
l-trees, where these consist of a tree with node-set
{2,...,n} together with two arcs incident to node 1. Since
tours are simply l-trees in which cach node is of valence 2,
a minimum l-tree that is a tour is in fact a minimum tour.
The ascent method is based on the fact that minimum 1-trees
are easy to find, and that certain transformations of arc-
length preserve minimum tours but may produce new minimum
l-trees.  The approach of Held and Karp has been refined by
Held et al. (1974), Helbig Hansen and Krarup (1974), and
Smith and Thompson (1977).

For the traveling salesman problem (5), unlike the short-
est path problem (1), transition from the "symmetric" ]
(undirected) case to the general "asymmetric" (directed) case

results in a significant reduction in the size of instances

that can be solved in a reasonable amount of time. For the
genceral case, the best exact method is apparently a modifica-
tion, due to Smith et al. (1977), of carlicr methods of
Eastman (1958), Shapiro (1977), and Bellmore and Malonc

(1968). They all rely on the fact that there is a good

n

e} a(i,n(i))

algorithm for minimnizing the sum o(n) = L
over all permutations 1m:N-eN (this is a form of the assign-
ment problem), while (5) requires minimization of o(n) over
the cyclic permutations.

Some approximate algorithms for (5) that have good

average-time behavior are mentioned in Section 6.
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B. Shortest Paths

Shortest path algorithms were surveyed by Dreyfus (1969)
and discussed in detail by bomschke (1972) and lLawler (1976).
In view of these studies, the surveys by Bradley (1975) and
Lawler (1978), and the bibliographies collected by Pierce
(197¢) and Pape (1977), we make only a few remarks here
rather than attempting to summarize a large body of material.

Problem (1) is usually solved as part of

(1*) For a given node s of G, find shortest paths from

s to all other nodes accessible from

-

One might think (1) could be solved significantly faster than
(1%). That is true for some interesting special classes of
araphs (Hadlock, 1977, 1978), but probably not for

qeneral graphs,

Several good algorithms are available for (1*), the best
known betna the ()(n’) procedure of Dijkstra (1959). By a
simple use of priorvity queuves, it can also be implemented in
time O(a log n) (Lawler, 1978), an advantage for sufficient-
ly sparse graphs. By a more complicated use of priorvity
quoues, Johnson (1977) shows that for cach fixed positive
inteqer Kk there is an implementation that runs in time
O(min {n‘ t 1/k + a, a log n}). When all arce lengths are
positive integers the algorithm of Wagner (1976) solves (1%)

in time O(max {(n,a,d}), where d 1is the maximum of the

lengths of shortest paths from g to other nodes.




Applying Dijkstra's procedure n times yields an 0(n3)

solution of

(1**) For each pair (s,t) of nodes of G, find a short-
est path from s to ¢t.
The clever but complicated approach of Fredman (1976) shows
that with O(n3 log log n/ log n) preprocessing an O(ny2)
solution of (1**) is available. The preprocessing consists
of compiling a table that is then used for all instances of a
given size n.

The most elegant solution of (1**) is the 0(n3) algo-

ritim of Floyd (1962). Extend the definition of arc-length
by setting a(i,j) = « when (i,j) is not an arc, and then

proceed as follows:

for k « 1 until n do

for i <« 1 wuntil n do

for j <1 until n do
a(i,j) « min {a(i,j), a(i,k) + a(k,j)}
end.
When this computation terminates, a(i,i) is the length of
a shortest circuit through node i, and when i # j «a(i,])
is the length ot a shortest path from 1 to 3j. From this
information it is easy to find the paths themselves.
In contrast to the shortest-path algorithms mentioned

earlier, Floyd's algorithm does not require nonnegative arc

lengths. It applies to an arbitrary directed network in

which no circuit is of negative length. A related algorithm

of Yuval (1976), using the fast multiplication of matrices




due to Strassen (1969) and based on an extension of the RAM
model that permits infinite-precision real arithmetic, solves

(1**) in time oO(n2*%!

). Klee and Larman (1978) extend
Floyd's mcthod to find shortest paths among those satisfying
various sorts of restrictions. For networks in which no
circuit is of negative length, Johnson (1977) and Lawler
(1978) show how to take advantage of sparsencess in the
directed case, and Lawler (1976) shows how to use matching
algorithms to find shortest paths in the undirected case.
See Section 6 for a solution of (1**) whose average-case
complexity is O(n2 logzn), and see Section 7 for lower

bounds on the complexity of shortest-path algorithms.

C. Spanning Trees and Optimization

in Independence Systems

Let us turn now to the minimum spanning tree problem (2).
For a connected undirected graph G = (N,A) and nonnegative
arc-length function o, we seck a spanning tree of minimum
weight. Call a subsct of A independent if it contains no
circuit. And for x € X ¢ A, say that x is a first member
of X if a(x) s a(x') for all x' ¢ X. Kruskal (1956)

showed a minimum spanning tree T can be constructed as

follows, where U is the set of unexplored arcs.
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begin
T+ @; U« A;
while U # @ do begin
u « a first member of U;
U <« U~{u};
if Tu{u} is independent then T <« Tu{u}
end;
print T
end.
Kruskal's algorithm can be implemented in time
O(a log n). A later algorithm of Prim (1957) and Dijkstra
(1959) solves (2) in time 0(n2) or, as implemented by
Kerschenbaum and Van Slyke (1972), in time O(a log n). For
sparse graphs the best algorithms are those of Yao (1975)
and Cheriton and Tarjan (1976), which are O(a log log n).
On the other hand, for each positive integer k there are
algorithms of Johnson (1975) and Cheriton and Tarjan (1976)

1+1/k for some

which, when applied to graphs having a 2 cn
fixed ¢ > 0, solve (2) in time Of(a).
Actually, Kruskal's procedure finds minimum spanning
trees without any restriction on the sign of o, so the same
procedure can be used to find maximum spanning trees; simply

redefine first member to mean of maximum a-value. The name

of greedy algorithm, proposed by Edmonds (1971), is then

especially appropriate, for one attempts at each stage to
swallow (add to T) the largest member u of U, refraining

only if u 1is immediately unpalatable. No attention is paid

to the possibility that this greedy choice, however tempting
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at the moment, may in the long run cause indigestion! And,
in fact, the greedy algorithm not only solves (2) but works
in the more general matroid setting described below.

The theory of matroids, which can be axiomatized in many
equivalent ways, was invented by Whitney (1933) as a gencr-
alization of the theory of lincar independence. Let us

define an independence system as a finite family I of

finite sets, called independent sets, such that every subset

of an independent set is independent. (In the example above,
a set of arcs is independent if it contains no circuit.) A
matroid is an independence system I such that for each
subset S of U;, all independent subsets of S are of the
same cardinality. An equivalent condition is that whenever
I and J are independent sets with |I| < |J|, there
exists j ¢ J such that Iv{j} is independent. A base of
a matroid I is a maximal member of I. (In the example,
the bases are the spanning trees of G.) Lawler (1976) lists
several books and other references on matroid theory, the
latest book being that of Welsh (1976). Bruno and Weinberg
(1976a,b) present matroid theory as the proper foundation
for the study of electrical networks, an important advantage
being that the well-developed duality theory of matroids can
replace the purely graph-theoretic duality notions which are
satisfactory only for planar graphs.

If I is a matroid, < 1is a linear ordering of VI,
and "first" is interpreted in terms of <, then with A re-
placed by VUl the above algorithm produces a base T of I
that is optimal in the following strong sense: for any other

base T' of 1 there is a bijection ¢: T = T' with
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t s ¢(t) for all t ¢ T. This was established by Rado
(1957), rediscovered independently by Gale (1968), Welsh
(1968) and Edmonds (1971), and extended to infinite matroids
by Klee (1971). In addition to the spanning tree problem, |
Lawler (1976) describes a "semimatching" problem, a job-
sequencing problem, and an experimental design problem that
have underlying matroid structures and hence can be solved
efficiently by the greedy algorithm. Of course, the com-
plexity of an implementation depends on the difficulty of
recognizing members of I.

FEach independence system I can be expressed in various
ways as the intersection of a finite number of matroids.
Many important problems of combinatorial optimization can be

cast in the following form: For an independence system I

that is the intersection of matroids E]""'lk of specified
sorts, and for a nonnegative function a on U1, find a
member of 1 that is of maximum a-weight--that is, maximize
ziel a(i) over all I ¢ I. Lawler (1976, Chap. 8) observes
that the traveling salesman problem (5) and the 3-dimensional
assignment problem (4''') can be formulated in this way for

k = 3, so good exact algorithms should not be expected for
general three-matroid optimization problems. However, for

k = 2 Lawler (1975, 1976) has both a "primal” algorithm
analogous to a procedure for finding minimum cost network
flows and a "primal-dual" algorithm analogous to a proccdure

for finding maximum matchings. The directed analogue of the

minimum spanning tree problem (2) can be handled in this way,




but is solved more efficiently by the special methods of
Chu and Liu (1965) and Edmonds (1967). See also Lawler
(1976) and his references, and Tarjan (1977).

When 1, k and a are as in the preceding paragraph,
and "first" means of maximum a-value, the greedy procedure
described earlier can be used as a heuristic for finding
indepcndunt sets of large weight. Results of Jenkyns (1976)
and Korte and Hausmann (1978) show that if I, is a member
of I of maximum a-weight and I_ is the output of the

9
greedy heuristic as applied to I and «, then

) A a(i)
s -——— 2 min dris) , 1
ier o(1) S ¢ VI ur(s) K f

o

where r(S) (resp. ur(SD is the minimum (resp. maximum)
of the cardinalities of the independent subsets of S. Both
inequalities are sharp in certain senses. See Korte (1978)
for a fuller description of "greedy" heuristics, their uses

and limitations, and for additional references.

6. THREE RECENT ADVANCES

As is clear from the recent dates of many of the cited
references, the field of combinatorial optimization is in a

very active stage of development. Three of the most ex-

citing recent advances have been the Dinic -Karzanov maximum
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flow algorithm, Minty's good algorithm for finding maximum
independent sets in a large class of graphs, and a collec-
tion of algorithms whose average-case behavior is

remarkably good.

A. The Dinic-Karzanov

Maximum Flow Algorithm

The papers of Dinic (1970) and Karzanov (1974) were men-
tioned carlier. Like other maximum flow algorithms, the
Dinic-Karzanov algorithm starts with a feasible flow ¢,
uses ¢ and the underlying network to produce an auxiliary
network, and by a computation in the latter attempts to find
an improvement ¢' of ¢. If an improvement ¢' is found,
the computation is repeated with ¢' 1in the role of ¢,
and when no improvement is found then ¢ is optimal. How-
ever, in the new algorithm the improvements are not made by
flow-augmenting paths but in a more global manner that leads
to an 0(n3) algorithm. The announcement of Karzanov (1974)
outlines the method but does not include details of proof.
Details can be found in the book of Adelson-Velsky et al.

(1975) (in Russian) and in the exposition of Even (1976).

3

aJ’) by 2. Galil.

S,
The algorithm has been improved to O(n/




B. Minty's Algorithm

for Maximum Independent Sets

The maximum independent set problem (4'') is
NP-complete, even when restricted to 3-valent planar graphs
(Garey, Johnson and Stockmeyer, 1976), but one may hope for
good algorithms that solve the problem for special classes of
graphs. For references to such algorithms, and to other re-
strictions under which the problem remains NP-complete, see
Garey and Johnson (1978?). In the bipartite case, (4'') 1is
well-solved by matching (Lawler, 1976, pp. 189-196). Py far
the most successful attack on the nonbipartite case is due to
Minty (1978?), who shows that matching techniques are also
applicable to all graphs that are claw-free. A claw is a
quadruple of nodes (v,w,Xx,y) such that each node in the set
$ = {w,x,y} 1is adjacent to v but no two members of §
are adjacent.

To appreciate how close Minty's result comes to the
boundary of NP-completeness, consider the restricted form of
the 3-dimensional assignment problem mentioned at the end of
Section 4. Let G be the graph whose nodes are the ordered
triples (i,j,k) of integers between 1 and n for which
uijk = 1, two nodes being adjacent if they agree in at least
one coordinate. Then G may have claws but it is free of

quintuples (v,w,x,y,z) such that each node in the set

S = {w,x,y,z} 1is adjacent to v but no two members of §




are adjacent. The problem of deciding, for each such G,
whether G contains an independent set of cardinality n,
is NP-complete.

Minty also considers the weighted version of (4''), in
which a node-weighting o 1is given and one seeks an inde-
pendent set of maximum weight. He shows that for claw-free
graphs this problem is reducible to the weighted matching

problem and hence solvable in polynomial time.

C. Some Algorithms

with Good Average-Case Behavior

From the worst-case vicewpoint, some well-solved problems
of combinatorial optimization have been so intensively
studied that further significant improvement in solution
methods seems unlikely; also, most researchers doubt the
existence of good algorithms for the NP-complete problems.
However, neither of these comments applies to the average-
case viewpoint. This fact, along with the belief that
average-case behavior is more important than worst-case be-
havior in many applications, has motivated the search for
algorithms of good average-case behavior.

Spira (1973) and Karp (1978) consider a complete directed
network ((N,A), a) whose arc lengths «a(i,j) are all
drawn independently from the same probability distribution in
Jo,«[. Spira proposes an algorithm for the all-pairs short-

est path problem (1**) and shows that for any distribution

the expected running time is O(nz logzn). Fredman (1976)
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shows how to reduce the expected number of comparisons (but
not the overall complexity) to O(n2 log n). Carson and Law
(1977) report on computations comparing Spira's method for v
various distributions with an improvement of the method of
Dijkstra (1959) due to Yen (1972).
Karp (1978) proposes an O(n3) approximate algorithm for
the traveling salesman problem (5). His algorithm first
solves the nxn assignment problem for the matrix (a(i,j))
and then patches together the cycles of the resulting permu-

tation to form a tour. He shows that if the a(i,j) are drawn

independently from the uniform distribution on ]0,1[ then,
with probability tending to 1 as n » «, the ratio of the
length of the tour produced by the algorithm to that of an
optimum tour is < 1 + €(n), where ¢(n) » 0 as n » &,

A tool in his proof is a result of Walkup (1977) on the
expected value of a random assignment problem. Similar
patching schemes appear in algorithms proposed by Karp (1977)
for the traveling salesman problem in the Euclidean plane.

In the results of Spira and Karp stated above, the under-
lying graph is always complete; only the arc lengths vary at
random. For other results on the average-case behavior of
algorithms, a notion of a random undirected graph that has
node-set N = {1,...n} and has a specified density p (or
has a specified number E of arcs) is required. Let Un
denote the set of all n(n-1)/2 unordered pairs of distinct
integers between 1 and n, each pair representing a
possible arc of a graph with node-set N. In the "p" model,

a sample graph is formed by including each member of Un

with probability p, independent of what other arcs are




chosen. In the "E" model, the sample space consists of all
ke, for which [A| = E, all such arc-sets A being
drawn with equal probabilities. When E = pn(n-1)/2, the
two models are closely related (Erdos and Rényi, 1961);
Angluin and Valiant (1977) show that if in a certain sense

an algorithm works for one model then it works for the other
one also.

A matching is perfect if it covers all nodes. Erdos and
Rényi (1966) show that if E(n) = %n log n + w(n)n and if
PM(n) 1is the probability that a random graph with n nodes
and E(n) arcs admits a perfect matching, then as (even)
n~+o, PM(n -1 if w(n) > . Using a model of computa-
tion similar to but more flexible than the RAM model, Angluin
and Valiant (1977) show there exists an algorithm that has
the following properties:

(a) accepting as input an undirected graph G with n
nodes, it outputs a perfect matching or concludes correctly
that G does not admit one;

(b) there exist positive constants ¢ and Kk such that
for each n and for each E > c¢cn log n, the expected run-
time is less than kn log n for random graphs with n
nodes and E arcs.

Pésa (1976) shows that if E(n) = Bn logn with § > 1,
and if T(n) 1is the probability that a random graph with
n nodes and E(n) arcs admits a tour, then T(n) » 1 as

n * «, Karp (1976) uses Posa's argument as the basis of a

polynomial time algorithm for finding tours almost surely.
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Considering spanning simple paths as well as tours, Angluin
and Valiant (1977) describe an algorithm that has the
following properties:

(a) accepting as input an undirected graph G with n
nodes, and a pair of nodes s, t with 1 < s < t < n, it
attempts to find a simple path from s to t that uses all
nodes (a tour when s = t); ’

(b) for each y > 0 there exist positive constants c¢ and
k such that for each n, for each E 2 cn log n, and for
each pair s, t, the probability is at least 1 - O(n ")
(fcr random graphs with n nodes and E arcs) that the
desired path is found in fewer than kn log n steps.

Essentially the same results are obtained by Angluin and
Valiant (1977) for the problem of finding a tour or a span-
ning simple path in a directed graph. Their complexity
estimates are based on a model of computation in which
randomized decisions are possible, but are worsened only by
an additional factor of 1log n when that possibility is re-
moved from the model.

See Karp (1976) for the results of probabilistic analyses
of other combinatorial search algorithms, including use of
the greedy algorithm to find large independent sets of nodes.
And see Evans (1976) for a treatment of maximum flow problems

in probabilistic graphs. Also, see the last two paragraphs

of Section 7.




7. THREE DIRECTIONS FOR RESEARCH

Since the field of combinatorial optimization is
developing so rapidly, it provides many directions for re-
search and many specific problems that beg for solution.
Rather than discussing individual problems, we focus on the
three directions of rescarch that seem respectively to be
most promising for

(a) elucidation of the fundamental theoretical issues;
(b) unification of the existing theory;

(¢) production of useful or interesting algorithms.

A. Finding Lower Bounds

The goal here is simply stated: Find sharp lower bounds
for the computational complexity of the important problems
of combinatorial optimization, preferably with respect to
the RAM or some closcly related model of random access
computation. When a problem deals with networks  ((N,A) ,a),
we say the problem is of complexity Q(i(n,a)) if there is
a constant ¢ > 0 such that every algorithm for solving the
problem requires at least ci(n,a) steps for worst-case
‘ input with parameters n and a. This lower bound is sharp
if the problem can be solved by an algorithm of complexity

O(r(n,a)), so that the worst-case behavior of the problem is

determined to within a multiplicative constant.
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At least with respect to the RAM model, this direction of
research appears to be very difficult. In particular, it
involves deciding whether P = NP. Nevertheless, it is
described as "promising" because it deals with such important
questions. Until sharp lower bounds are found for a variety
of problems of combinatorial optimization, there will be no
clear understanding of why some problems are easy and others
superficially resembling them are very hard. An upper bound
on the intrinsic complexity of a problem can be established
by designing and analyzing an algorithm for its solution. If
the design involves some ingenuity and the analysis is done
with care, the result is likely to be interesting and perhaps
even useful. At the very least, it is likely to be "non-
trivial" in an intuitive sense. Nontrivial lower bounds are
much harder to come by, becausce they reguire consideration of
all conceivable algorithms and thus demand a much clearer
understanding of the underlying logical issues. 1In fact, as
Weide (1977) remarks, trivial lower bounds are often the only
ones available. Consider, for example, the problem of find-
ing a longest simple path between two given nodes of a
complete undirected network with n nodes. The problem is
NP-hard and hence probably does not admit a good algorithm

1000
1000 ) However, the

--not even one of complexity O(n
best known lower bound (with respect to the RAM model) is

the trivial one of Q(nz), obtained by noting that none of
the n(n-1)/2 arc lengths can be ignored by any algorithm

that solves the problem for all sets of input data.




Weide (1977) discusses a few methods that have been used

to establish lower bounds, with respect to various models of
computation, on the complexity of combinatorial problems.

The interested reader should consult Kerr (1970), Spira and
Pan (1975), and Yao et al. (1977) concerning shortest paths,
Spira and Pan (1975) and Shamos and Hoey (1975) concerning
minimum spanning trees, Harper and Savage (1972) concerning
maximum matching, Harper and Savage (1972) and Rabin (1972)
concerning shortest tours, Holt and Reingold (1972) concern-
ing the detection of circuits or connectedness, and Rivest
and Vuillemin (1975) concerning the detection of an artitrary
nontrivial monotone graph property (a property possessed by
some but not all graphs and preserved by addition of arcs).
The most promising method seems to me to be the one of Rabin
(1972) , which is used also by Spira and Pan (1974) and Yao
et al. (1977). (The application to shortest paths by Yao

et al. (1977) is apparently invalid because it depends on an
incorrect counting argument, but the paper is still of inter-
est.) Some other papers related to Rabin's method are those

of Spira (1972), Klee (1975) and Yao (1976).

B. Optimization in Oriented Matroids

The theory of matroids is a combinatorial generalization
of the theory of linear dependence in a vector space over a
field, and of the theory of linear equalities. Similarly,
the theory of oriented matroids may be viewed as a combina-

torial generalization of the theory of positive linear




dependence in a vector space over an ordered field, and of
the theory of inequalities. The notion of an oriented ma-
troid developed from the digraphoids of Minty (1966) through
the generalizations of Camion (1968), Fulkerson (1968) and
Rockafellar (1969), to the present axiomatic versions of
Bland (1974), Las Vergnas (1975) and Lawrence (1975). A good
basic reference is Bland and Las Vergnas (1978).

Realizing a possibility first suggested by Rockafellar
(1969), Bland (1974, 1976) and Lawrence (1975) show the basic
parts of linear programming theory can be extended to
oriented matroids. Both have oriented matroid formulations
of linear programming duality, and Bland (1976, 1977) also
has a finite pivoting method which svecializes, in the con-
text of linear programming, to Dantzig's simplex method with
a new pivot selection rule. The study of optimization in the
framework of oriented matroids seems to offer the best chance
for the unification of large parts of linear and combinato-
rial optimization. This is related to the approach of lLawler
(1976, Chap. 9) through matroids with parity conditions, and
it is important to clarify the relationships between the two

approaches.

C. Development of Algorithms

A striking aspect of combinatorial mathematics, and of
combinatorial optimization in particular, is its endless
supply of interesting problems. To become convinced that the

design and analysis of algorithms for combinatorial optimiza-
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tion will continue for a long time, one need only glance at a

few volumes of Annals of Discrete Mathematics, Information

Processing Letters, Journal of the Association for Computing

Machinery, Mathematical Programming, Mathematical Programming

Studies, Networks, Opcrations Research, Proceedings of ACM

Symposia on the Theory of Computing, Proceedings of IEEE

Symposia on the Foundations of Computer Science, or the SIAM

Journal on Computing. Below are described some directions of
algorithm development that seem at present to be especially

promising.

Exploring the boundary of NP-completeness

By following the advice in the excellent chapter of Garey
and Johnson (19783?) on using NP-completeness to analyze
problems, designers of algorithms can help to "explore the
boundary" of NPC, the class of all NP-complete problems. The
general idea is that, having established the membership of a
problem in one of the classes P and NPC, one should not
rest before finding a closely related problem in the other
class. For each of the problems (1) - (4), Garey and
Johnson (1978?) describe several relatives in NPC, and for
(5) there are relatives in P. The reader has met some of
these relatives earlier, and a few more are described below.

The Chinese postman is a relative of the traveling sales~
man. In serving his route he must traverse each street at

least once, one-way streets only in the proper direction, and




return to his starting point. And of course he wants to

minimize the distance traveled. The postman's problem is in

P if all streets are directed or all are undirected (Edmonds

and Johnson, 1973), but the mixed case 1is NP-complete
(Papadimitriou, 1976).
When G = (N,A) and H = (V,E) are undirected graphs,

a perfect H-packing of G 1is a partition of N into pair-

wise disjoint subsets each of which is of cardinality |V|
and induces in G a subgraph isomorphic to H. For fixed
H, the problem of deciding whether G admits a perfect
H-packing belongs to P if |V]| < 2 (use matching) but is
NP-complete whenever |V| > 3 (Kirkpatrick and Hell, 1978).
Let NPI = NP ~ (PuNPC), the class of all problems in
NP that are of "intermediate" difficulty in the sense that,
even though they can't be solved by polynomially bounded
algorithms, they're at least not so difficult as to be
NP-complete. Under the assumption that P # NP, Ladner
(1975) proves NPI is nonempty but no one has produced a
member of NPI that is of practical importance or intrinsic
interest aside from its membership in NPI. As noted by
Garey and Johnson (1978?), linear programming is a prime
candidate. A class of problems that seems well suited to
exploring the boundary of NPC, and perhaps of NPI, is
obtained as follows. Let F be the set of all functions

£ z; > z; such that f(k) < k for all k z;, the set

of all nonnegative integers. For each f ¢ F an instance of

the problem Qf <resp. Rf) is associated with a graph
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G = (N,A), a pair (x,y) of distinct members of N, and a
sequence S of f(n-2) distinct member of N~{x,y}. The
problem Qf <rcsp. Rf> asks whether there is a simple path
from x to y that uses all the members of S in some
{resp. in the specified) order, other intermediate nodes
being permitted as well. Note that Q. belongs to NEC

when f(k) = k, while R belongs to P whenever k - f(k)

£
is bounded. When f = 0, both problems belong to P. When
f =1 and G 1is undirected, both problems belong to P.
(Add a new node t, new arcs {t,x} and ({t,y}. Let all
arcs have capacity 1. Solve as a maximum flow problem with

sink t and source s, where S = {s}.) What happens for

other choices of f?

Approximate algorithms

We saw in the result of Sahni and Gonzalez (1976) that
unless P = NP, the general undirected traveling salesman
problem (5) does not admit a polynomially bounded algorithm
that is e-approximate, no matter how large € is chosen.
On the other hand, when G's arc lengths satisfy the
triangle inequality, the 0(n3) method of Christofides
(1976) is %-—approximato and it may even turn out that for
each € > 0 this special casec of (5) admits a polynomially
bounded e€-approximate algorithm. In short, though the
NP-complete problems are computationally equivalent so far

as solvability by polynomially bounded exact algorithms is
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concerned, this does not apply to approximate algorithms.
Much is known about approximate algorithms but much more re-
mains to be discovered. Good sources of information are the
annotated bibliography of Garey and Johnson (1976), the
survey article of Korte (1978), and the book of Garey and

Johnson (19782).

Average-case and probabilistic analysis

of algorithms

In Part C of Section 6, three sorts of algorithms are
lumped together as "algorithms with good average-case
behavior." Some are precisely that, while others are with
high probability €(n)-approximate, where ¢(n) =~ 0 as
n » ®. A period of considerable activity in the average-
case and probabilistic analysis of algorithms for combinator-
ial optimization is now under way. A basic paper is Karp
(1976) , and Weide (1977) also has a brief introduction to
the subject.

The papers on random graphs by Erdds and Rényi do not
treat algorithms explicitly, but they contain many facts
that are essential for the designer of algorithms in this
area; several of these papers are collected in Erdds (1973).
In addition to these and the papers mentioned in Part C of
Section 6, the interested reader should consult Grimmett and
McDiarimid (1975), Walkup (1977b), Lueker (1978), Karp (1978?)

Cohen et al. (1978?), and Klee and Larman (1978?a,b).
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8. WHAT ARE THE BEST SOURCES

OF FURTHER INFORMATION?

As is clear from our frequent reference to them, the two
indispensable books for the study of combinatorial optimiza-
tion are those of Lawler (1976) for problems in P and of

Garey and Johnson (19782?) for problems in PC. But even

they cannot cover everything in detail, and many of the
references cited by them or in our list of references are
also necessary for a thorough understanding of the field.

We close by mentioning two very active areas of combina-
torial optimization whose omission here causes regret.
Though both are very important for the solution of practical
problems, they have been omitted because of space considera-
tions and because of our decision to base the entire
exposition on problems (1) - (5). For access to the tremen-
dous volume of material on Scheduling (several books,

hundreds of research papers), a good starting point is the

special issue of Operations Research devoted to the subject.

It is listed here under Florian (1978).

For discrete location problems, see Krarup and Pruzan

(1978) and their references.
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